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INTRODUCTION

A major objectivc in fractal analysis of fracture is to provide quantitative measures of
fracture surface complexity and thus to gain deeper understanding of the fracture process. For
example, in ductile metals, such as high-toughness steels, the microscopic process that governs
the generation of complex fracture surfaces is microvoid formation at grain and carbide
interfaces. The microvoids coalesce at the crack tip permitting the crack to advance by internal
necking and further flow and rupture of the metal between the voids. Thus, higher toughness in
such materials reflects higher resistance to void formation so that a higher stress intensity at the
crack tip is required to advance the crack. It is not yet clear how the fractal properties of a
fracture surface produced by such a process should depend on material properties.

The fracture surface global fractal dimension (i.e., D(q) for q=0) has been observed to
vary inversely with the toughness in ductile metals (ref 1). These findings are suggestive, but
they are only part of the story. The present work establishes that for high-strength and
high-toughness ASTM A723 (modified AISI 4340 with 0.2 at. % V) steel, Charpy impact fracture
surfaces exhibit substantial variations in local fractal parameters. The local variations of the
fractal parameters imply that the ASTM A723 steel Charpy fracture surfaces are either
inhomogeneous and fractal, multifractal, or inhomogeneous and multifractal. The variability of
the local scaling should play an important role in a fractal model of the fracture process.

The concept the of "crowding index" was introduced by P. Grassberger, R. Badii and A.
Politi (ref 2) to define the local scaling over a range of scales e as a(x,e) = In(Q (x,e))/ln(E)
where the measure 1i (x,e) is taken here as the length of coastline in an \epsilon-ball centered at
x where x is on the set.

We report here on measurements of local fractal dimensions for individual islands and
lakes formed by sectioning Charpy impact fracture surfaces of an ASTM A723 steel. We denote
the local dimensions as a(x,E) since they are closely related to "crowding indices." The a(x,e)
values were determined using the perimeter-yardstick technique, which has previously been
employed for the analysis of geographical features. Perimeter-yardstick technique is based on
Mandelbrot's (ref 3) observation that the length of a coastline increases as the unit of
measurement, or "yardstick" is reduced. The length of a fractal coastline L(E) centered at x
measured with yardstick E (approximately) obeys Richardson's equation:

L(E) -- cE 1-D = c& `-xF)E (1)

where c is a constant and D is the coastline fractal dimension.

The yardstick is the pixel spacing of an image at a given magnification in the present
analysis. Thus, the perimeter of an individual island or lake on a fracture surface section is
measured at several magnifications and data are fit to Richardson's equation. As demonstrated
by log-log plots of perimeter p versus yardstick E, the data are well-represented by Eq. (1), and
a(x,e)-valucs arc determined by least squares fitting of ln(p(E)) versus ln(E) to Eq. (1). Thus,
the measured a(x,e)-values are average crowding indices for a region near x for the range of
scales, E = E, over which the island or lake perimeters are measured. That is, a(x,E) is an
average of "crowding indices" for balls of radius \epsilon over a region in the neighborhood of x



on the fracture surface defined by an island or lake perimeter. We follow the customary
approach and ignore differences of unity (Mandelbrot's rule) in fractal dimensions for a surface
and its sections.

The global fractal dimension of the fracture surface sections were also determined by
standard slit-island analysis (refs 3-8). The local fractal dimensions a(x,e) determined by
perimeter-yardstick analysis are consistent with the fractal dimension determined by slit-island
analysis in the sense that the average a(x,e) for "randomly selected" islands and lakes 's
consistent with the global D-value determined by slit-island analysis. The breadth of the
distribution of a(x,e)-values provides additional information about the fracture surface, which can
not be obtained via slit-island analysis. If a multifractal interpretation of the data is appropriate,
limiting values of the global multifractal dimensions D(q) satisfy

D(--o) ý: m'ac(x,e) and D(oo) ými d(X,IE)

EXPERIMENTAL DETAILS

The Charpy impact test is a commonly used measure of material toughness. A square
V-notched bar is struck and fractured by a swinging arm and the energy absorbed is determined
from the amplitude of the swing of the arm. The Charpy specimens were standard 10-mm
square V-notched bars, prepared from a sample of ASTM A723 (modified AISI 4340 with 0.2 at.
% V) steel, which had been heat treated to produce tempered martensite having nominal
strength of 160 Ksi and hardness of 38 on the Rockwell C scale.

Fracture surfaces were: (1) coated with electroless nickel (chosen for hardness and
uniformity); (2) polished on a metallurgical grinding wheel; and (3) etched with a 2% nitol
solution that attacked the exposed steel. Subsequent light microscopic examination easily
distinguished islands and lakes: lakes (polished zones) appeared bright and islands (etched zones)
appeared dark in the microscope field. A typical coated and sectioned Charpy specimen showing
islands is displayed in Figure 1.

Images of fracture surfaces were digitized via a video camera mounted on the
microscope, using the JAVA image analysis system (ref 9). The JAVA system employs a 640 by
480 array of gray levels (light intensity levels) ranging from 0 to 255 in value (0 black; 255 white),
with each value representing the darkness of the image at that particular pixel coordinate. Thus,
sectioned fracture surface islands and lakes were displayed on the computer screen in shades of
gray and stored as arrays of gray levels.

Perimeter measurements for individual islands and lakes were taken at magnifications of
3.2, 5, 10, 20, and 50x. The yL'rdr!Lck values were taken to be the inverse of the number of pixels
required to represent 1 mm at each magnification. Islands and lakes were randomly selected
from those whose dimensions were suitable for acquisition at magnifications ranging from 3.2 to
50x.
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Conventional slit-island analysis was performed on sections of the same Charpy fracture
surface. Curve fitting and computation was performed using MATLAB software (ref 10).

RESULTS

Typical perimeter-yardstick results are presented in Figure 2. The In(p) versus ln(E)
values are well-represented by straight lines. The lack of (substantial) scatter or curvature in the
ln(p(E)) versus ln(E) curves suggests that the a(x,E)-values are essentially constant over t0'
perimeters. The deduced local fractal dimensions a(x,E) are summarized in Table 1.
a(x,e)-values for e 1.3 x 10" cm ranged from 1.17 to 1.40 (mean: 1.28, standard deviation:
0.08) for the "randomly selected" Charpy fracture islands and lakes.

Table 1. Summary of Results

Perimeter-yardstick local fractal dimensions (locally averaged crowding indices) from analysis of
islands and lakes formed on sections at magnifications of 3.2, 5, 10, 20, and SOx on Charpy
impact fracture surface of ASTM A723 steel.

Lake Dimensions 1.23, 1.39, 1.17, 1.21, 1.21 - 1.24 ± 0.08

Island Dimensions 1.40, 1.32, 1.36, 1.31, 1.19 - 1.32 ± 0.07

Combined Dimensions - 1.28 ± 0.08

Slit-island global fractal dimension based on 30 islands and 30 lakes from the same sections
imaged at a magnification of 10x: 1.25.

Slit-island (perimeter-area) results for 60 islands and lakes on the same sections used for
perimeter-yardstick analysis are presented in Figure 3, which is typical of results obtained from
Charpy fractures in tempered martensite for ASTM A723 steels (ref 8). The ln(p) versus
ln(arca) values are linear over two orders of magnitude (from 0.0001 to 0.01 cm2) in area.
Slit-island analysis yields 1.25 for the global fractal dimension, which is consistent with the mean
value of the local fractal dimensions of the "randomly selected" subset of islands and lakes.
Values of the global fractal dimension for Charpy impact fractures in A723 steels as reported by
McAnulty et al. (ref 8) ranged between about 1.20 and 1.30.

The variations in the "randomly selected" island and lake local fractal dimensions a(x,E)
are real and reflect variations in the local geometry. The variations are analogous to the
variations in the fractal dimensions of different geographical coastlines. One might conclude that
the fracture surface of high-strength and high-toughness ASTM A723 (modified AISI 4340 with
0.2 at. % V) steel is fractally inhomogeneous or homogeneously multifractal with
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D(--o) > 1.40, D(O) = 1.25, and D(oa) r 1.17

The single-branch perimeter-area data support the multifractal interpretation.
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M~ur Iicro~zraph of a coated and scclionid Cup rtrcsurtace (2()X).
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s~teel aiid thic black "islhnds' are voids.
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